Name:

B SHAPE AND SPACE

Transformations

— Transformations

Clarification: Students need to be familiar with the term "invariant points" as points that are not altered by a transformation.

B1 describe how vertical and horizontal translations of functions affect graphs and their related equations:

$$y = f(x - h)$$

$$y-k=f(x)$$

Knowledge

B1

1. If the graph of 2x + 3y = 5 is translated 4 units up, determine an equation of the new graph.

A.
$$2x + 3y = 1$$

B.
$$2x + 3y = 9$$

C.
$$2x + 3(y + 4) = 5$$

D.
$$2x + 3(y-4) = 5$$

Understanding

B1

2. If (a, b) is a point on the graph of y = f(x), determine a point on the graph of y = f(x-2) + 3.

A.
$$(a-2, b+3)$$

B.
$$(a-2, b-3)$$

C.
$$(a+2, b+3)$$

D.
$$(a+2, b-3)$$

B1

- 3. If the point (2, -8) is on the graph of y = f(x-3)+4, what point must be on the graph of y = f(x)?
 - A. (-1, -12)
 - B. (-1, -4)
 - C. (5, -12)
 - D. (5, -4)

B2 describe how compressions and expansions of functions affect graphs and their related equations:

$$y = af(x)$$
$$y = f(kx)$$

Knowledge B2

- 4. How is the graph of $y = 7^{3x}$ related to the graph of $y = 7^x$?
 - A. The graph of $y = 7^x$ has been expanded vertically by a factor of 3.
 - B. The graph of $y = 7^x$ has been compressed vertically by a factor of $\frac{1}{3}$.
 - C. The graph of $y = 7^x$ has been expanded horizontally by a factor of 3.
 - D. The graph of $y = 7^x$ has been compressed horizontally by a factor of $\frac{1}{3}$.

B2

5. The graph of $y = \sqrt{9 - x^2}$ is shown below.

Which of the following graphs represents $2y = \sqrt{9 - x^2}$?

A.

B.

C.

D.

6. If the graph of $x^2 + y^2 = 4$ is vertically compressed by a factor of $\frac{1}{5}$, then reflected in the y-axis, determine an equation for the new graph.

A.
$$x^2 + \frac{y^2}{25} = 4$$

B.
$$x^2 + 25y^2 = 4$$

C.
$$-x^2 + 25y^2 = 4$$

D.
$$-x^2 + \frac{y^2}{25} = 4$$

B3 describe how reflections of functions in both axes and in the line y = x affect graphs and their related equations:

$$y = f(-x)$$

$$y = -f(x)$$

$$y = -f(x) y = f^{-1}(x)$$

Knowledge

В3

7. The graph of y = -f(x) is a reflection of the graph of y = f(x) in

- A. the y-axis.
- B. the *x*-axis.
- C. the line y = x.
- D. the line y = -x.

Knowledge

B3

8. What is the inverse of the relation $y = x^3$?

- A. $y = \frac{1}{x^3}$
- $B. \quad x = y^3$
- C. $y = (-x)^3$
- D. $x = y^{\frac{1}{3}}$

B3

- 9. The point (6, -12) is on the graph of the function y = f(x). Which point must be on the graph of the function y = 3f(-x)?
 - A. (-6, -36)
 - B. (6, 36)
 - C. (-6, -4)
 - D. (6, 4)

Higher Mental Processes

В3

- 10. If $f(x) = \frac{2x}{x-1}$, determine the equation of $f^{-1}(x)$, the inverse of f(x).
 - A. $f^{-1}(x) = \frac{x}{x-2}$
 - B. $f^{-1}(x) = \frac{2x}{2x-1}$
 - C. $f^{-1}(x) = \frac{x-1}{2x}$
 - D. $f^{-1}(x) = \frac{1}{x-2}$

11. For which graph of y = f(x) would f(-x) = -f(x)?

A.

B.

C.

D.

Understanding

В3

12. When the graph of y = f(x) is transformed to the graph of y = f(-x), on which line(s) will the invariant points lie?

A.
$$y = 0$$

B.
$$x = 0$$

C.
$$y = x$$

D.
$$y = 1, y = -1$$

Knowledge

B4

13. Given the graph of y = f(x) below, determine an equation for an asymptote for the graph of $y = \frac{1}{f(x)}$.

- A. x = 3
- B. x = -3
- C. y = -2
- D. y = 2

14. The graph of y = f(x) is shown below.

Which of the following graphs represents $y = \frac{1}{f(x)}$?

A.

B.

C.

D.

- 15. If the range of y = f(x) is $-1 \le y \le 2$, what is the range of $y = \frac{1}{f(x)}$?
 - A. $-1 \le y \le \frac{1}{2}$
 - B. $-1 \le y \le \frac{1}{2}, \ y \ne 0$
 - C. $y \ge \frac{1}{2}$ or $y \le -1$
 - D. $y \ge 2$ or $y \le -1$

B4

- 16. The graph of y = f(x) is transformed to the graph of $y = \frac{1}{f(x)}$. If the following points are on the graph of y = f(x), which point would be invariant?
 - A. (1, 2)
 - B. (2, 1)
 - C. (3, 0)
 - D. (0, 3)

17. The graph of y = f(x) is shown below.

On the grid provided, sketch the graph of $y = \frac{1}{f(x)}$.

B5

18. The graph of the function y = f(x) is shown below.

Which of the following is a graph of y = |f(x)|?

A.

B.

C.

D.

B5

- 19. If the range of y = f(x) is $-3 \le y \le 5$, what is the range of y = |f(x)|?
 - A. $-3 \le y \le 5$
 - B. $0 \le y \le 3$
 - C. $0 \le y \le 5$
 - D. $3 \le y \le 5$

20. The graph of the function y = f(x) is shown below.

Which of the following is a graph of $y = \frac{1}{|f(x)|}$?

B.

C.

D.

B6 describe and perform single transformations and combinations of transformations on functions and relations

Clarification: The absolute value of a function and the reciprocal value of a function may also be combined with transformations.

Knowledge

B6

21. Determine an equation that will cause the graph of y = f(x) to expand vertically by a factor of 4 and shift 3 units up.

A.
$$y = \frac{1}{4} f(x) + 3$$

B.
$$y = \frac{1}{4} f(x) - 3$$

C.
$$y = 4f(x) + 3$$

D.
$$y = 4f(x) - 3$$

22. In the diagram below, y = f(x) is graphed as a broken line.

- Which equation is defined by the solid line?
- $A. \quad y = 2f(x+1)$
- $B. \quad y = f(2x 1)$
- $C. \quad y = f(2x+1)$
- $D. \quad y = 2f(x-1)$

23. The graph of y = f(x) is shown below. On the grid provided, sketch the graph of $y = -f(\frac{1}{2}(x+2))$.

24. The graph of y = f(x) is shown below on the left. Which equation represents the graph shown on the right?

A.
$$y = -2f(2x + 3)$$

B.
$$y = -2f(2x+6)$$

$$C. \quad y = -2f\left(\frac{1}{2}x + 3\right)$$

D.
$$y = -2f(\frac{1}{2}x + 6)$$

- 25. If the point (6, -2) is on the graph y = f(x), which point must be on the graph of $y = \frac{1}{f(-x) + 4}$?
 - A. $\left(-10, -\frac{1}{2}\right)$
 - B. $\left(-6, \frac{1}{2}\right)$
 - C. $\left(-6, \frac{7}{2}\right)$
 - D. $\left(-\frac{1}{6}, 2\right)$

26. The graph of y = f(x) is shown below.

Understanding

B6

a) On the grid provided, sketch the graph of:

$$y = 2 |f(x)| + 1$$

Understanding

B6

b) On the grid provided, sketch the graph of:

$$y = 2 |f(x) + 1|$$